推荐系统技术专题

地点:北京富力万丽酒店
时间:2019年9月6日 13:30—17:30

「论坛简介」

随着互联网的发展,人们日渐被爆炸式涌现的信息包围,但无论是信息消费者还是信息生产者,获得感兴趣的内容和精准推广都遇到了很大挑战,而推荐系统就是解决这一矛盾的重要工具。本论坛将邀请数位知名技术构建者,让你更好地了解推荐系统。

出品人: 朱小强 | 阿里妈妈深度学习算法平台负责人

朱小强,花名怀人,毕业于清华大学,阿里资深算法专家,现任阿里妈妈深度学习算法平台负责人、兼任定向广告&信息流广告排序技术团队负责人。他主持了三代核心算法架构(大规模、深度端到端、深度实时化)的设计和落地,驱动了深度学习对阿里广告技术的全面变革与创新,领导了阿里开源深度学习框架X-DeepLearning从0到1的自研、从1到开源演进的全过程,在KDD、AAAI、SIGIR等顶级会议上发表过DIN/DIEN/ESMM等多篇有影响力的工业实战论文,是workshop DLP-KDD 2019的发起人和联合主席。

论坛日程

13:35-14:20 

朱小强 | 阿里妈妈深度学习算法平台负责人

即将公布

即将公布

14:20-15:05 

殷大伟 | 京东集团高级总监

电商中的推荐系统

电子商务中的推荐系统通过推荐最符合其需求和偏好的项目来帮助用户完成信息搜索任务。 个性化推荐系统已经在商业应用中表现出了巨大的成功,例如 亚马逊,eBay,淘宝等。在本次演讲中,我将首先介绍电子商务推荐系统的设计,然后对推荐系统中存在的研究问题逐个展开,包括候选检索,用户行为理解,以及 推荐排名等等。 最后,我将讨论商业推荐系统中对这些问题的最新进展和潜在解决方案。

15:15-16:00 

任恺 | 快手科技推荐架构负责人

即将公布

即将公布

16:00-16:45 

唐睿明 | 华为诺亚方舟实验室推荐与搜索项目组资深研究员

推荐系统中的前沿技术研究与落地:深度学习、强化学习与AutoML

推荐系统在人们的日常生活中随处可见,是不可或缺的一部分。深度学习,在大数据时代,做为主流的机器学习模型之一,在图像和语音识别领域取得了突破性的进展。强化学习,在机器人控制和游戏博弈场景下,取得了长足的进步。AutoML,在计算视觉中的图像分类问题中,自动设计出各种新颖的神经网络,不断刷新各类竞赛的精度上限。 将这三类技术应用于推荐系统,会带来如何的效果,这是一个非常有趣且值得研究的课题。在这次演讲中,我将首先向大家简单的介绍推荐系统、其在华为内部的一些应用场景;然后我会向大家科普学术界和工业界中一些比较流行的用于推荐系统的深度学习、强化学习模型和AutoML技术;同时,我会向大家展示诺亚方舟实验室研究出的学术成果以及其在推荐系统中的落地应用情况。演讲大纲:一、推荐系统在华为内部的应用场景。二、学术界和工业界推荐系统中的深度学习、强化学习模型和AutoML技术。三、诺亚方舟实验室研究出的学术成果以及其在推荐系统中的落地应用。

  • 联系我们:闫婉婷 15101014297 yanwt@csdn.net
  • 商务合作:任伟 18911709282 renwei@csdn.net
  • 媒体合作:武力 13301211220 wuli@csdn.net
  • 内容合作:周翔 13161056835 zhouxiang@csdn.net

扫码回复:大会,加入大会福利群

x